Fredholm pseudo-differential operators on weighted Sobolev spaces
نویسندگان
چکیده
منابع مشابه
compactifications and function spaces on weighted semigruops
chapter one is devoted to a moderate discussion on preliminaries, according to our requirements. chapter two which is based on our work in (24) is devoted introducting weighted semigroups (s, w), and studying some famous function spaces on them, especially the relations between go (s, w) and other function speces are invesigated. in fact this chapter is a complement to (32). one of the main fea...
15 صفحه اولFredholm Weighted Composition Operators on Dirichlet Space
Let H be a Hilbert space of analytic functions on the unit disk D. For an analytic function ψ on D, we can define the multiplication operator Mψ : f → ψf, f ∈ H. For an analytic selfmapping φ of D, the composition operator Cφ defined on H as Cφf f ◦ φ, f ∈ H. These operators are two classes of important operators in the study of operator theory in function spaces 1–3 . Furthermore, for ψ and φ,...
متن کاملCompact operators on Banach spaces: Fredholm-Riesz
1. Compact operators on Banach spaces 2. Appendix: total boundedness and Arzela-Ascoli [Fredholm 1900/1903] treated compact operators as limiting cases of finite-rank operators. [1] [Riesz 1917] defined and made direct use of the compactness condition, more apt for Banach spaces. See [Riesz-Nagy 1952] for extensive discussion in the Hilbert-space situation, and many references to original paper...
متن کاملUnbounded B-fredholm Operators on Hilbert Spaces
This paper is concerned with the study of a class of closed linear operators densely defined on a Hilbert space H and called B-Fredholm operators. We characterize a B-Fredholm operator as the direct sum of a Fredholm closed operator and a bounded nilpotent operator. The notion of an index of a B-Fredholm operator is introduced and a characterization of B-Fredholm operators with index 0 is given...
متن کاملWeighted composition operators on weighted Bergman spaces and weighted Bloch spaces
In this paper, we characterize the bonudedness and compactness of weighted composition operators from weighted Bergman spaces to weighted Bloch spaces. Also, we investigate weighted composition operators on weighted Bergman spaces and extend the obtained results in the unit ball of $mathbb{C}^n$.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Arkiv för Matematik
سال: 1983
ISSN: 0004-2080
DOI: 10.1007/bf02384315